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It was first shown by Sagdeevl that ion~sound solitary
wave can occur in a plasma with cold ions and hot electrons. Later
Washimi and 'I‘arm;f;ti2 showed that the Korteweg-deVries equation can
be derived for the problem of ion-sound wave disturbances moving with
velocity slightly greater than the ion-sound speed in a homogeneous
Plasma free of external field. Conséquently steady-state solution
for ion-sound solitary wave was again demonstrated by these authors.
The theoretical prediction of the existence of ion—sound solitary
wave has attracted a great deal of attention in recent years since
the subject is highly relevant to the theory of collisionless shock
waves. We wish to discuss some basic conceptual difficulties asscci~
ated with these earlier derivations and to propose a more accurate
picture of the essential physics inwvolved.

The basic assumptions adapted by Washiml et al. in deriving
the Korteweg-deVries equation for the ion-sound disturbance are:
(1) the ions are cold compared with the electrons, i.e. Te > T,
and may be described by -one-dimensional hydromagnetic equations,
(2) electron inertia effects are negligible and (3) the electrons
may be described by an isothermal equation of state. From the last

two assumptions we cbtain
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where ng is the electron density, & the electrostatic potential

associated with the ion-sound distrubance, and e the absolute value

of the electron charge. Integrating (1) one obtains
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where ng is the density of the uniform background. Expression (2)
resembles the equilibrium Boltzmann distribution. As a matter of fact
expression (2) has also been used in the work by Sagdeevl. At this point
we like to call attention to some of the basic difficulties contained
implicitly in justifying Eq. (1) or expression (2). It is not entirely
clear that in general expression (2) répresents adequately the electron
density under the influence of the traveling wave. In the following
we shall remark a few points.

1.) From a microscopic or kinetic—theoretical point of view,
a steady state (defined with respect to the wave frame) is possible
only when the electron distribution is a function of the Hemiltonian

H. Here
H = & v - e®o(x) . (3)

In (3) v is the particle velocity and @ denotes the electrostatic
potential associated with the solitary wave.
2.) If in the absence of the wave the electrons have Maxwellian

distribution; then we expect that
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where Fe is defined in the wave frame and Ve is the wave velocity.

(Here we have assumed that the potential ®O(X) peaks at x = 0).
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which is not compatible with (4). The point which we try to make here

is that in a laboratory

3.) In order that expression (2) holds true, we must

: ed (x)
n_ = dv F = n_ exp -
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From (5), we see that the only permissible distributuion

Fe(H) is

F, (1)
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However, from (6)

F_(H)
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veling wave is not

but

Therefore from the kinetic theory point of view a steady state solution

H = %-mvz - ep(x - v )

1

2
H 5 m(v - Vw) - ed(x - th) .

It

frame the Hamiltonian associated with the tra-
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of the type described by (6) is not conceivable because it would violate

the Eoundary condition described by (4).

we want to point out.

This is the first difficulty



Let us next discuss the second difficulty.

Before geoing

further we see that the first difficulty does not occur if the

plasma initially possesses a displaced Maxwellian electron distri-

bution such that the displacement velocity happens to be the wave

velocity v, s as was done in Ref. 3. For this particular case

the boundary condition given by (4) reduces to

Fe(Hy
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which is indeed compatible with the steady state solution described

by (6). However in general two basic time scales should be considered.

One is the transit time, say T, which may be defined as

where L 1is the typical width of the wave and v

speed. The second time scale is a relaxation time,
physical meaning may be considered as follows. Let
in a certain region the plasma is in an equilibrium
wave is absent initially. Then let us suppose that
is "formed" somewhere else and propagated into this
sideration. Of course, we expect that the wave and
interact and consequently the electron distribution

from an initial form, say
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denotes the wave
1. , and its
¥
us imagine that
state when the
the solitary wave
region under con-

the plasma would

function would evolve

) (12)



to a form described by (6). The relaxation time, T, » measures
such a time-evolution process. A steady state may be argued to exist
if we can show that

Tr
1 > T . (13)
. :

In general we expect that T is finite and in fact can be very large
for the low energy particles such that condition (13) does not hold true.

With the conceptual difficulties just mentioned we cannot
justify the density relation described by (2). Therefore, we question
the validity of the steady state ion-sound solitary wave.

One may try to sidestep the first difficulty mentioned earlier
by arguing that since v, o (’178/1.\/1)1/2 (where M is the ion mass) which
is small compared with the electron thermal speed, the boundary condi-
tion given by (4) is approximately satisfied by the sélution given by
(6). This argument is not entirely acceptable. The point is that micro-
scopic processes, namely ion reflection electron trapping, can signifi-
cantly affect the physical picture, and produce a persistent time-dependent
process. To examine the importance of trapping process let us make some
order of magnitude estimates.

It is true that for small amplitude waves trapping of particles
can be neglected in many cases. The reasons are that usually the popu-
lation of trapped particles is small and the "trapping time" is long com-
pared to the most imporzant time scales of interest to us. In the following
we shall see that neither reasons are true in the case of ion-sound solitary
wave. To illustrate this point let us accept the solution for the moment

and then check the possible consequence which the wave can produce. We




know the solitary wave solution, i.e.,
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where L - Ae/(éM/Z)2 s (ke is the electron Debye length), Te denotes

the electron temperature, and &M dis defined by

Wave Speed

. (15)
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From (14) we see that particles with velocities within the range

, 1 5
68MT ¢ 65MT \?
<v < | v + €

w m w m
e e

(16)

may be trapped by the wave. Now we define a trapping Ve such that

L
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= (651) 2 v, (17)
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where ve is the electron thermal speed. We know that solution (14)
existsl if 0. < d8M <0.6 . Hence let us consider a very weakly super~

sonic case, say oM o 0.1 . Even in such case, v, =&~ 0.75 Ve which

t

is very large. This result indicates that a large population of electrons

c;n be involved with the trapping process. Thus it is unlikely that
trapping is a negligible nonlinear process in a general theory of the
ion-sound solitary wave. Furthermore ve should point out that the

typical bounce period of (or sometimes called the ”trapﬁing time™) a

-~

typical trapped particle is very short. We sec easily




For the case 6M = 0.1 , is shorter than ten "electron plasma

3/2

g
periods" that is very short compared to the scale [i.e., (SM)
w;l(mi/me)%] for which the perturbation scheme used by Washimi and
Tanuiti is wvalid.

To conclude: because hydromagnetic theory only described
the macroscopic motion of plasma, physical processes associated with
discrete particles are absent. Thus in order to take account of the
effect of particle trapping, we must use kinetic theory. First, the ref-
lectién of ions should be included into a consistent picture. This has
recently been done by P.H. Sakanéka4. Second, the electron trapping,
which is a much faster process than ion Landau damping, must be included.
To our knowledge, this has not yet been achieved.
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